
REFERENCE GUIDE FOR ELECTROMETER - CABLE - CHAMBER CONNECTIONS

Capintec Electrometer uses TNC-F/M or BNC-F (Figure A or C)	Victoreen Chamber with Triax Cable uses TNC-M/F (Figure D)
Capintec Triax Cable uses TNC-M/F and TNC-F/F (Figure C)	Keithley Electrometer uses BNC-F (Figure A)
Capintec Chamber uses TNC-M/M or BNC-M (Figure A or C)	Keithley Chamber with Triax Cable uses BNC-M (Figure A)
Wellhofer Electrometer uses TNC-F/M (Figure C)	PTW Chamber with 1 Meter Triax Cable uses BNC-M. (Figure A or B)
Wellhofer Triax Cable uses TNC-M/F and TNC-F/F (Figure C)	PTW Chamber with 10 Meters Triax Cable uses BNC-M (Figure A)
Wellhofer Chamber uses TNC-M/M (Figure C)	PTW Extensions Triax Cable uses BNC-M and BNC-F (Figure A)
N.E. Electrometer uses TNC-F/M (Figure B)	PTW Electrometer uses M, TNC-F/M or BNC-F (Figure A)
N.E. Chambers w/Triax Cable uses TNC-M/F or BNC-M . (Figure B)	Standard Imaging Electrometer uses BNC-F (Figure A)
Victoreen Electrometer uses TNC-M/F (Figure D)	CNMC Electrometer uses BNC-F (Figure A)

DIAGRAM FOR REFERENCE GUIDE CONNECTIONS

CONNECTIONS ADAPTERS

Item 323-320 is able to modify the BNC-F Keithley Electrometer to the TNC M/F Capintec, Wellhofer or Nuclear Enterprises Triax Cable.

Item 323-323 is able to modify the BNC-F Triax Cable to the TNC-F/M Wellhofer, Capintec and Nuclear Enterprises Electrometer.

Item 323-324 is able to modify the BNC-M Chamber to the TNC-F/M Wellhofer, Capintec and Nuclear Enterprises Electrometer.

Item	Triax Adapters
323-320	Triax BNC-M to Triax TNC-F/M Connectors
323-323	Triax BNC-M to Triax TNC-F/F Connectors w/Cable
323-324	Triax BNC-F to Triax TNC-M/F Connectors
323-328	Triax BNC-F to Triax BNC-F Connectors
323-329	Triax BNC-M to Triax BNC-M Connectors
323-334	Triax BNC-M to Triax BNC-F Connectors w/Cable
323-336	Triax BNC-M to PTW M-Type F Connector w/Cable

NOTE: Standard cable length is 1 meter. Cable length can be from 6" (15.2cm) to 1 m (100cm). Must specify cable length for length shorter than 1 meter

Item	Coax to Triax Adapters
323-339	Coax BNC-M and Triax BNC-F Connectors with 1 Meter Cable
323-340	Coax BNC-F and Triax BNC-M Connectors Diode to Electrometer Connector

Item	Coax Adapters
323-341	Coax BNC-F and BNC-F Connectors
323-342	Coax BNC-F and BNC-F Panel Mount Connectors
323-343	Coax BNC-M and BNC-M Connectors

Item	Custom Connector Adapter
323-350	Custom Adapter - Specify Connectors
	1 Meter Cable between connectors is Standard -
	Specify Length if another length is needed
	Cable Adapters are MTO, no exchanges or refunds

See Connector Example Page

CABLE CONNECTOR REFERENCE

Naming Standard: Connector Type (Center Pin Gender / Outer Housing Gender).

Letters are for reference only.

(M/F)

(F/M)

CONNECTOR DUST CAPS

The Dust Caps with chains prevent dirt and dust from accumulating in the connectors. Dust and dirt accumulations will cause high leakage currents.

Item	Description
323-360	Male Dust Cap for BNC-F and Female Center Pin
323-361	Female Dust Cap for BNC-M and Male Center Pin
323-362	Male Dust Cap for TNC-F/M or TNC-M/M Connectors
323-363	Female Dust Cap for TNC-M/F or TNC-F/F Connector

TRIAX EXTENSION CABLES

The triaxial cable assemblies are made of Microdot flexible white, 3 mm diameter, shielded, low-noise, high impendance, radiation resistant cable, designed to carry the extremely small currents generated by ion chambers without signal degradation.

A standard extension cable has a male connector on one end to mate with the electrometer and a female connector on the other end to mate with the output connector of the ion chamber.

See reference guide and cable connector reference pages to determine correct connectors for triax cables.

For NE America (Nuclear Enterprise)

Item	TNC Triax Cable	Length
323-1313	TNC-M/F and TNC-F/M Connector	33' (10 Meters)
323-1314	TNC-M/F and TNC-F/M Connector	40' (12 Meters)
323-1315	TNC-M/F and TNC-F/M Connector	50' (15 Meters)
323-1316	TNC-M/F and TNC-F/M Connector	59' (18 Meters)

Dust Caps Must Be Purchased Separately

For Keithly or PTW

Item	BNC Triax Cable with Dust Caps	Length
323-1303	BNC-F and BNC-M Connectors	33' (10 Meters)
323-1304	BNC-F and BNC-M Connectors	40' (12 Meters)
323-1305	BNC-F and BNC-M Connectors	50' (15 Meters)
323-1306	BNC-F and BNC-M Connectors	59' (18 Meters)

For Capintec or Wellhofer

Item	TNC Triax Cable	Length
323-1323	TNC-M/F and TNC-F/F Connector	33' (10 Meters)
323-1324	TNC-M/F and TNC-F/F Connector	40' (12 Meters)
323-1325	TNC-M/F and TNC-F/F Connector	50' (15 Meters)
323-1326	TNC-M/F and TNC-F/F Connector	59' (18 Meters)

Dust Caps Must Be Purchased Separately

CUSTOM TRIAX EXTENSION CABLES

These cables are made to order, no exchanges or refunds are available. When ordering, please specify the following:

- · Connection 1 and Connection 2
- · Length of the Cable in Meters
- Cable Type 3mm Diameter White (Standard) or 5.3mm Diameter Suhner Swiss Gray (Heavy Duty)
- · Cable on Reel if Yes, Specify the Connection at the Hub

Item	Description
323-1300	Custom Cable

COAX EXTENSION CABLES

Item	Description
322-891	32' (10M) Coax Cable, Diode, BNC-F to BNC-M
322-892	49' (15M) Coax Cable, Diode, BNC-F to BNC-M
322-893	65' (20M) Coax Cable, Diode, BNC-F to BNC-M

TRIAX EXTENSION CABLE ON SMALL REEL

Hub End (Electrometer Connection) Normally connected to Electrometer outside of treatment room.

Cable reel assemblies offer a great convenience in winding and storage of extension cables. A cable reel will extend the life of a cable significantly by eliminating kinks and providing protection during storage. Reel out only as much cable as needed. The extended end is where the cable reels out . The hub end has 18" (45.7 cm) of fixed triax cable. Connector type and location is determined by where the reel will be used, inside or outside of room.

The reel can be purchased without a cable. The small reel can be used with cables 50' (15 meters) or less in length. This reel can not be used for cable lengths getter than 50' (15 meters).

See reference guide and cable connector reference pages to determine correct connectors for triax cable on reel.

Item	Description
323-2400	Small Cable Reel without Cable

For Keithly or PTW **Connector Ends WILL Mate**

Item	BNC Triax Cable Reel w/Dust Caps	Length
323-2402	Hub End - BNC-F Connector Extended End - BNC-M Connector	40' (12 Meters)
323-2403	Hub End - BNC-F Connector Extended End - BNC-M Connector	50' (15 Meters)
323-2412	Hub End - BNC-M Connector Extended End - BNC-F Connector	40' (12 Meters)
323-2413	Hub End - BNC-M Connector Extended End - BNC-F Connector	50' (15 Meters)

For NE America (Nuclear Enterprise) and (New) Wellhofer **Connector Ends WILL Mate**

Item	TNC Triax Cable Reel	Length
323-2424	Hub End - TNC-M/F Connector Extended End - TNC-F/M Connector	40' (12 Meters)
323-2423	Hub End - TNC-M/F Connector Extended End - TNC-F/M Connector	50' (15 Meters)
323-2432	Hub End - TNC-F/M Connector Extended End - TNC-M/F Connector	40' (12 Meters)
323-2433	Hub End - TNC-F/M Connector Extended End - TNC-M/F Connector	50' (15 Meters)

Dust Caps Must Be Purchased Separately

For Capintec and (Old) Wellhofer **Connector Ends WILL NOT Mate**

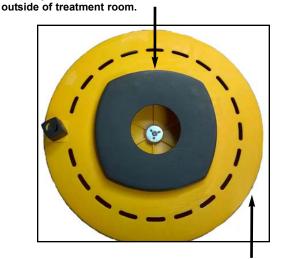
Item	TNC Triax Cable Reel	Length
323-2444	Hub End - TNC-M/F Connector Extended End - TNC-F/F Connector	40' (12 Meters)
323-2443	Hub End - TNC-M/F Connector Extended End - TNC-F/F Connector	50' (15 Meters)
323-2454	Hub End - TNC-F/F Connector Extended End - TNC-M/F Connector	40' (12 Meters)
323-2453	Hub End - TNC-F/F Connector Extended End - TNC-M/F Connector	50' (15 Meters)

Dust Caps Must Be Purchased Separately

WALL PLATES FOR TRIAX CABLE CONNECTOR

These wall plates grip a standard BNC or TNC triax cable connector. The wall plates are made to replace a standard single or double electrical wall plate. There is an adjustable collar in the opening that can be tightened to the connector to prevent movement. An allen wrench for the collar adjustment is included with each wall plate.

Item 323-3802 will replace a standard single wall plate and has two (2) openings to hold two (2) cable connectors. The openings are one on top and one on bottom.


Specifications

Material: Stainless Steel

Item	Description
323-380	Wall Plate, Single for Triax Cable Connector
323-381	Wall Plate, Double for Triax Cable Connector
323-3802	Wall Plate, Single for 2 Triax Cable Connectors

TRIAX EXTENSION CABLE ON LARGE REEL

Hub End (Electrometer Connection)
Normally connected to Electrometer

Extended End (Ion Chamber Connection).

Cable reel assemblies offer a great convenience in winding and storage of extension cables. A cable reel will extend the life of a cable significantly by eliminating kinks and providing protection during storage. Reel out only as much cable as needed. The extended end is where the cable reels out. The hub end has 18" (45.7 cm) of fixed triax cable. Connector type and location is determined by where the reel will be used, inside or outside of room.

The reel can be purchased without a cable. The large reel can be used with any cable length but must be used on all cable lengths over 15 meters.

See reference guide and cable connector reference pages to determine correct connectors for triax cable on reel.

Item	Description
323-2401	Large Cable Reel without Cable

For Keithly or PTW Connector Ends WILL Mate

Item	BNC Triax Cable Reel w/Dust Caps	Length
323-2404	Hub End - BNC-F Connector Extended End - BNC-M Connector	40' (12 Meters)
323-2405	Hub End - BNC-F Connector Extended End - BNC-M Connector	50' (15 Meters)
323-2406	Hub End - BNC-F Connector Extended End - BNC-M Connector	65' (20 Meters)
323-2414	Hub End - BNC-M Connector Extended End - BNC-F Connector	40' (12 Meters)
323-2415	Hub End - BNC-M Connector Extended End - BNC-F Connector	50' (15 Meters)
323-2416	Hub End - BNC-M Connector Extended End - BNC-F Connector	65' (20 Meters)

For NE America (Nuclear Enterprise) and (New) Wellhofer Connector Ends WILL Mate

Item	TNC Triax Cable Reel	Length
323-2422	Hub End - TNC-M/F Connector Extended End - TNC-F/M Connector	40' (12 Meters)
323-2425	Hub End - TNC-M/F Connector Extended End - TNC-F/M Connector	50' (15 Meters)
323-2426	Hub End - TNC-M/F Connector Extended End - TNC-F/M Connector	65' (20 Meters)
323-2434	Hub End - TNC-F/M Connector Extended End - TNC-M/F Connector	40' (12 Meters)
323-2435	Hub End - TNC-F/M Connector Extended End - TNC-M/F Connector	50' (15 Meters)
323-2436	Hub End - TNC-F/M Connector Extended End - TNC-M/F Connector	65' (20 Meters)

Dust Caps Must Be Purchased Separately

For Capintec and (Old) Wellhofer Connector Ends WILL NOT Mate

Item	TNC Triax Cable Reel	Length
323-2442	Hub End - TNC-M/F Connector Extended End - TNC-F/F Connector	40' (12 Meters)
323-2445	Hub End - TNC-M/F Connector Extended End - TNC-F/F Connector	50' (15 Meters)
323-2446	Hub End - TNC-M/F Connector Extended End - TNC-F/F Connector	65' (20 Meters)
323-2452	Hub End - TNC-F/F Connector Extended End - TNC-M/F Connector	40' (12 Meters)
323-2455	Hub End - TNC-F/F Connector Extended End - TNC-M/F Connector	50' (15 Meters)
323-2456	Hub End - TNC-F/F Connector Extended End - TNC-M/F Connector	65' (20 Meters)

Dust Caps Must Be Purchased Separately

PTW FARMER® IONIZATION CHAMBERS

Thimble chambers for measuring high-energy photon, electron and proton beams

- · Fully guarded chamber
- · Sensitive volumes of 0.6 cm3, vented to air
- · Flat energy response
- Correction factors needed to determine absorbed dose to water or air kerma are published in the pertinent dosimetry protocols
- The chambers are designed for the use in solid state phantoms and are not waterproof

The 0.6 cm³ PTW Farmer chambers are designed for absolute dosimetry in high-energy photon, electron and proton beams.

Item 300-640: The 30010 is a Classical therapy chamber, it is a wide spread ionization chamber for absolute dose measurements in radiation therapy. The acrylic chamber wall ensures the ruggedness of the chamber. The wall material is graphite with a protective acrylic cover, and the electrode is made of Al. The nominal photon energy range is from 30 kV to 50 MV.

- · Acrylic wall, graphited
- · Aluminum central electrode

Item 300-645: The 30011 is a pure graphite therapy chamber. The 30011 all graphite Farmer chamber is used for absolute dose measurements in radiation therapy in cases where a minimum of different materials in the radiation field is desired. Due to the sole use of graphite the energy response of the chamber at energies below [∞]Co varies stronger than that of chambers with an aluminum electrode. The 30011 is used for therapy dosimetry, where a completely graphite-built chamber is required. The nominal photon energy range is from 140 kV to 50 MV.

Item 300-650: The 30012 Farmer chamber with graphite wall is intended for absolute dose measurements in radiation therapy. The graphite wall makes the chamber almost water-equivalent, the aluminum central electrode improves the energy response at energies below ⁶⁰Co. The 30012 is used where a chamber with graphite wall and Al electrode is required. The nominal photon energy range is from 60 kV to 50 MV.

The electron energy range of all chambers is from 10 MeV to 45 MeV. The chambers type 30011 and 30012 with their graphite caps are of delicate construction and should be handled with extreme care. The guard rings of all chamber types are designed up to the measuring volume an acrylic build-up cap for in-air measurement in ⁶⁰Co beams is included with each chamber, as well as a calibration certificate.

Item	Description
300-640	PTW 30010, 0.6cc Farmer® Chamber
300-645	PTW 30011, 0.6cc Graphite Farmer® Chamber
300-650	PTW 30012, 0.6cc C/A1 Farmer® Chamber

Specify Connection

WATERPROOF PTW FARMER® IONIZATION CHAMBER

Waterproof therapy chamber for absolute dosimetry in high-energy photon, electron and proton beams

- · Waterproof, fully guarded chamber
- · Sensitive volumes of 0.6 cm3, vented to air
- · Flat energy response
- · Acrylic wall, graphited
- · Aluminum central electrode
- Correction factors needed to determine absorbed dose to water or air kerma are published in the pertinent dosimetry protocols

- The chamber is waterproof and can be used in water or solid state phantoms
- The acrylic chamber wall ensures the ruggedness of the chamber

Item 300-655 has a nominal photon energy range from 30 kV to 50 MV, the electron energy range is from 10 MeV to 45 MeV. This chamber type is of rugged construction, since the wall material is graphite with a protective acrylic cover and the electrode is made of aluminum. The guard ring is designed up to the measuring volume. A calibration certificate for calibration in absorbed dose to water or air kerma is included with each chamber. Air density correction is required for each measurement

Item	Description
300-655	PTW 30013, 0.6cc Waterproof Farmer® Chamber

Specify Connection

PTW FARMER® IONIZATION CHAMBERS

Type of Product Vented opinishical Vented op	Specifications	Item 300-640	Item 300-645	Item 300-650	Item 300-655 (Waterproof)
Contraction Chamber	PTW Model	30010	30011	30012	30013
acc. IEC 60731 about the through doesnety in practicities of the plant o	Type of Product	vented cylindrical	vented cylindrical	vented cylindrical	vented cylindrical
Application absolute docimetry in radiotherapy beams absolute therapy docimetry in radiotherapy beams absolute therapy docimetry in sold state phantoms and air sold state phantoms and state phantoms and air sold state phantoms and state phantoms and air sold state phantoms and sold state phantoms and air sold state phantoms and		ionization chamber	ionization chamber	ionization chamber	ionization chamber
Measuring Quantities absorbed dose to water, absorbed dose to water, absorbed dose to water, absorbed dose to water, arkema, exposure					
Measuring Quantities absorbed dose to water, air kerma, exposure at kerma, exposure at kerma, exposure ar kerma, exposure<	Application				
air kerma, exposure 6°Co Nominad Sansitive Volume 0.6 cm² 0.7 waterproof, verted tully guarded fully guar		radiotherapy beams	solid state phantoms and air	solid state phantoms and air	water, solid state phantoms and air
Reference Radiation Quality	Measuring Quantities	absorbed dose to water,	absorbed dose to water,	absorbed dose to water,	absorbed dose to water,
Nominal Sansitive Volume 0.6 cm² 0.6 cm² 0.6 cm² 0.6 cm² 0.6 cm² Nortwaterproof, vented fully guarded Nully gu					
Design NOT waterproof, vented http guarded guarded http guarded ht		®Co	⁸⁰ Co	⁶⁰ Co	^{®0} Co
Fefference Point	Nominal Sensitive Volume				0.6 cm ³
Petersense Point	Design				
Tamm from tip Tamm from ti					
Intercition of Incidence	Reference Point				
Nominal Response 20 mC/Gy 20 mC/Gy 20 mC/Gy 20 mC/Gy 20 mC/Gy					-
#00 V nominal					
# 500 V maximal # 500 V maxim					
Polarity Effect at ⁶⁶ Co	Chamber Voltage				
Photon Energy Response 5±2% (70 kV to 280 kV) 5±4% (200 kV to ⁶² Co) 5±4% (200 kV to					
S ± 4 % (200 kV to ⁽¹⁰ Co) S ± 4 % (200 kV to ⁽¹⁰ Co) S ± 4 % (200 kV to ⁽¹⁰ Co)			******		
Directional Response in S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 5" S ± 0.5% for rotation around the chamber axis and for titling of the axis up to ± 0.5% for rotation aro	Photon Energy Response				
Catable Plantom Catable P		≤ ± 4% (200 kV to ⁶⁰ Co)			≤ ± 4% (200 kV to ⁶⁰ Co)
the axis up to ± 5° Leakage Current					
Cabic Leakage Current S ± 4 (A S ± 4 (Solid State Phantom				
Leakage Current S ± 4 fA S	Street and Street In Make		the axis up to ± 5"	the axis up to ± 5"	C I O FO for retailer assured the
Cable Leakage ≤ 1 pC/(Gy-cm) ≤ 1 pC/(Gy-cm) S 1	Directional Response in Wate	pr.			chamber axis and for tilting of
Materials and Measures Wall of Sensitive Volume 0.335 mm PMMA, 0.425 mm graphite, 1.85 g/cm² 1.85 g/cm² 1.85 g/cm² 1.85 g/cm² 1.85 g/cm² 1.19 g/cm² 0.09 mm graphite, 1.85 g/cm² 1.85 g/cm² 1.85 g/cm² 1.19 g/cm² 0.09 mm graphite, 1.85 g/cm² 1.	Leakage Current	≤ ± 4 fA	≤ ± 4 fA	≤ ± 4 fA	≤ ± 4 fA
Wall of Sensitive Volume 0.335 mm PMMA, 1.19 g/cm² 0.425 mm graphite, 1.85 g/cm² 0.425 mm graphite, 1.85 g/cm² 0.335 mm PMMA, 1.19 g/cm² 0.035 mm graphite, 1.19 g/cm² 0.09 mm graphite, 1.19 g/cm² 0.09 mm graphite, 1.19 g/cm² 1.19 g/cm² 0.09 mm graphite, 1.19 g/cm² 0.09 mm graphite, 1.19 g/cm² 1.19 g/cm² 0.09 mm graphite, 1.19 g/cm² 0.09 mm graphite, 1.19 g/cm² 1.85 g/cm² 1.85 g/cm² 56.5 mg/cm² 47.5 mg/cm² 47	Cable Leakage	≤ 1 pC/(Gy-cm)	≤ 1 pC/(Gy·cm)	≤ 1 pC/(Gy-cm)	≤ 1 pC/(Gy-cm)
Wall of Sensitive Volume 0.335 mm PMMA, 1.9 g/cm² 0.425 mm graphite, 1.85 g/cm² 0.425 mm graphite, 1.85 g/cm² 0.335 mm PMMA, 1.19 g/cm² 0.335 mm PMMA, 1.19 g/cm² 1.19 g/cm² 0.09 mm graphite, 0.09 mm graphite, 1.85 g/cm² 1.85 g/cm² 1.19 g/cm² 0.09 mm graphite, 1.85 g/cm² 0.09 mm graphite, 1.85 g/cm² 1.95 g/cm² 79 mg/cm² 79 mg/cm² 56.5 mg/cm² <th></th> <th></th> <th></th> <th></th> <th></th>					
1.19 g/cm²	material and measures				
0.09 mm graphite, 1.85 g/cm²	Wall of Sensitive Volume				
1.85 g/cm² 1.85 g/cm² 79 mg/cm² 79 mg/cm² 56.5 mg/cm² 79 mg/cm² 56.5 mg/cm² 79 mg/cm² 79 mg/cm² 56.5 mg/cm² 79 mg/cm² 56.5 mg/cm² 79 mg/cm² 56.5 mg/cm² 79 m			1.85 g/cm ⁻	1.85 g/cm ⁻	
Total Wall Area Density 58.5 mg/cm² 79 mg/cm² 79 mg/cm² 79 mg/cm² 56.5 mg					
Dimension of Sensitive radius 3.05 mm radius 3.05 mm length 23.0 mm length 24.0 mm length 23.0 mm length 24.0 m	Total Mail Acre Beach.		2	3	
Volume length 23.0 mm Al 99.98, dismeter 1.15 mm PMMA, thickness 4.55 mm PMMA, t					
Central Electrode					
Description PMMA, thickness 4.55 mm P		-			-
Ion Collection Efficiency at Nominal Voltage					
In collection time	Build-up Cap	PMMA, thickness 4.55 mm	PMMA, thickness 4.55 mm	PMMA, thickness 4.55 mm	PMMA, thickness 4.55 mm
Max. dose rate for ≥ 99.5 % saturation 5 Gy/s 10 Gy/s	Ion Collection Efficiency at N	ominal Voltage			
≥ 99.5 % saturation 5 Gy/s 99.0 % saturation 10 Gy/s 10 Gy/s <th>Ion collection time</th> <th>140µ8</th> <th>140µ8</th> <th>140µs</th> <th>140µs</th>	Ion collection time	140µ8	140µ8	140µs	140µs
> 99.0 % saturation 10 Gy/s 10 Gy/s 10 Gy/s 10 Gy/s 10 Gy/s Max. dose per pulse for ≥ 99.5 % saturation 0.46mGy 0.46mGy 0.46mGy 0.46mGy ≥ 99.0 % saturation 0.91mGy 0.91mGy 0.91mGy 0.91mGy Useful Ranges Chamber voltage ± 100 to 400 V ±	Max. dose rate for				
Max. dose per pulse for ≥ 99.5 % saturation 0.46mGy 0.46mGy 0.46mGy ≥ 99.0 % saturation 0.91mGy 0.91mGy 0.91mGy Useful Ranges Chamber voltage ± 100 to 400 V Radiation quality 30 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons (50 to 270) MeV protons (50 to 270) MeV protons (10 to 45) MeV electrons (50 to 270) MeV protons (50 to 270) MeV protons (50 to 270) MeV protons (50 to 270) MeV protons Field size (5x 5) cm² to (40 x 40) cm² Temperature 50°104F (10°40°C) 50°104F (10°40°C) 50°104F (10°40°C) 50°104F (10°40°C) 50°104F (10°40°C) Humidity 10 - 80%, max 20 g/m³	≥ 99.5 % saturation				
≥ 99.5 % saturation 0.46mGy 0.46mGy 0.91mGy Useful Ranges ± 100 to 400 V Chamber voltage ± 100 to 400 V Radiation quality 30 kV to 50 MV photons (10 to 45) MeV electrons (10 to 45) MeV electrons (10 to 45) MeV electrons (50 to 270) MeV protons (50 to 270) MeV protons (50 to 270) MeV protons (10 to 45) MeV electrons (50 to 270) MeV protons (50 to 270) MeV protons (50 to 270) MeV protons (50 to 270) MeV protons		10 Gyrs	10 Gy/s	10 Gy/s	10 Gy/s
Useful Ranges ± 100 to 400 V ± 10					
Useful Ranges End					
Chamber voltage ± 100 to 400 V ± 100	≥ 99.0 % saturation	u.a inioy		u.aimay	U.STITIGY
Radiation quality 30 kV to 50 MV photons 140 kV to 50 MV photons 60 kV to 50 MV photons 30 kV to 50 MV photons (10 to 45) MeV electrons (10 to 45) MeV electrons (10 to 45) MeV electrons (50 to 270) MeV protons (50 to 270) MeV proton	Useful Ranges				
(10 to 45) MeV electrons (50 to 270) MeV protons (50	Chamber voltage		± 100 to 400 V	± 100 to 400 V	
(50 to 270) MeV protons	Radiation quality				
Field size (5 x 5) cm² to (40 x 40) cm² (5 x 5) cm² to (40 x 40) cm² (5 x 5) cm² to (40 x 40) cm² (5 x 5) cm² to (40 x 40) cm² (5 x 5) cm² to (40 x 40) cm² Temperature 50*104F (10*40°C) 50*104F (10*40°C) 50*104F (10*40°C) 50*104F (10*40°C) Humidity 10 - 80%, max 20 g/m³ 10 - 80%, max 20 g/m³ 10 - 90%, max 20 g/m³ 10 - 80%, max 20 g/m³		(10 to 45) MeV electrons			
Temperature 50°-104F (10°-40°C) 50°-104F (10°-40°C) 50°-104F (10°-40°C) 50°-104F (10°-40°C) Humidity 10 - 80%, max 20 g/m³					
Humidity 10 - 80%, max 20 g/m ³ 10 - 80%, max 20 g/m ³ 10 - 90%, max 20 g/m ³ 10 - 90%, max 20 g/m ³					
	Temperature	50"-104"F (10"-40"C)	50°-104°F (10°-40°C)	50°-104°F (10°-40°C)	50°-104°F (10°-40°C)
	Humidity		10 - 80%, max 20 g/m3	10 - 90%, max 20 g/m ³	10 - 80%, max 20 g/m ³
Air pressure 700 - 1060 hPa 700 - 1060 hPa 700 - 1060 hPa 700 - 1060 hPa	Air pressure	700 - 1060 hPa	700 - 1060 hPa	700 - 1060 hPa	700 - 1060 hPa

PTW SEMIFLEX® IONIZATION CHAMBERS

Waterproof thimble chambers for measuring high-energy photon and electron radiation

- Waterproof, semiflexible design for easy mounting in scanning water phantoms
- Sensitive volumes of 0.125 cm³ and 0.3 cm³, vented to air
- · Suitable for use in water phantoms
- · Flat energy response within a wide energy range

The semiflex chambers are designed for therapy dosimetry, mainly for dose distribution measurements in motorized water phantoms. They have a short stem for mounting and a flexible connection cable. The nominal useful energy range is from 140 kV to 50 MV photons and 10 MeV to 50 MeV electrons. The wall material is graphite with a protective acrylic cover. The guard rings are designed up to the measuring volume. An acrylic build-up cap for in air measurement in ⁶⁰Co beams is included with each chamber, as well as a calibration certificate for calibration in absorbed dose to water or in air kerma. Air density correction is required for each measurement. Both chambers are shaped cylindrically with an inner diameter of 5.5 mm; they differ only in the length of the measuring volume.

Item 300-660

· Minimized directional response

The 31010 semiflexible chamber is the ideal compromise between small size for reasonable spatial resolution and large sensitive volume for precise dose measurements. This makes the 31010 chamber to one of the most commonly used chambers in scanning water phantom systems. The chamber volume of 0.125 cm³ gives enough signal to use the chamber also for high precision absolute dose measurements. The sensitive volume is approximately spherical resulting in a flat angular response and a uniform spatial resolution along all three axes of a water phantom.

Item 300-662

· Increased sensitive volume for low level measurements

The 31013 semiflexible chamber is ideal for precise dose measurements and for the measurement of dose distributions in scanning water phantom systems. The chamber is used as an alternative for the 31010 chamber in cases where increased signal levels are required and spatial resolution along the axis of the chamber can be compromised.

Item	Description
300-660	PTW 31010, 0.125cc Semiflex® Chamber
300-662	PTW 31013, 0.3cc Semiflex® Chamber

Specify Connection

Specifications	Item 300-660	Item 300-662
PTW Model	31010	31013
Type of Product	vented cylindrical	vented cylindrical
	ionization chamber	ionization chamber
Application	absolute dosimetry in	absolute dosimetry in
	radiotherapy beams	radiotherapy beams
Measuring Quantities	absorbed dose to water,	absorbed dose to water,
	air kerma, exposure	air kerma, exposure
Reference Radiation Quality	⁶⁰ Co	⁶⁰ Co
Nominal Sensitive Volume	0.125 cm ³	0.3 cm ³
Design	Waterproof, vented	Waterproof, vented
	fully guarded	fully guarded
Reference Point	on chamber axis, 4.5mm from chamber tip	on chamber axis, 9.5mm from chamber tip
Direction of Incidence	radial	radial
Nominal Response	3.3 nC/Gy	10 nC/Gy
<u> </u>	≤ 1% per year	≤ 1% per year
Long-term Stability Chamber Voltage	400 V nominal	400 V nominal
Chamber voltage	± 500 V maximal	± 500 V maximal
Dolority Effort at 600	< 2%	< 1%
Polarity Effect at ⁶⁰ Co Photon Energy Response	≤ ± 2% (140 kV to 280 kV)	≤ ± 2% (140 kV to 280 kV)
. IIII Eliaidh Masholisa	≤ ± 4% (140 kV to ⁶⁰ Co)	≤ ± 4% (100 kV to ⁶⁰ Co)
	≤ ± 5% (50 kV to 150 kV)	- 2 +70 (100 KV to 00)
Directional Response	≤ ± 0.5% for rotation around the	≤ ± 0.5% for rotation around the
in Water	chamber axis and for tilting of	chamber axis and for tilting of
water	the axis up to ± 10°	the axis up to ± 10°
Leakage Current	≤ ± 4 fA	≤ ± 4 fA
Cable Leakage	≤ 1 pC/(Gy·cm)	≤ 1 pC/(Gy·cm)
Materials and Measures		
Wall of Sensitive Volume	0.55 mm PMMA,	0.55 mm PMMA,
	1.19 g/cm ³	1.19 g/cm ³
	0.15 mm graphite,	0.15 mm graphite,
	0.82 g/cm ³	0.82 g/cm ³
	78 mg/cm ²	78 mg/cm ²
Dimension of Sensitve	78 mg/cm ² radius 2.75 mm	78 mg/cm ² radius 2.75 mm
Dimension of Sensitve Volume	78 mg/cm ² radius 2.75 mm length 6.5 mm	78 mg/cm ² radius 2.75 mm length 16.25 mm
Dimension of Sensitve Volume Central Electrode	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm
Dimension of Sensitve Volume Central Electrode	78 mg/cm ² radius 2.75 mm length 6.5 mm	78 mg/cm ² radius 2.75 mm length 16.25 mm
Dimension of Sensitve Volume Central Electrode Build-up Cap	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm pminal Voltage 121 µs	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for > 99.5 % saturation	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm pminal Voltage 121 µs 6 Gy/s	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for > 99.5 % saturation > 99.0 % saturation	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm pminal Voltage 121 µs	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm
Volume Central Electrode Build-up Cap Ion Collection Efficiency at No	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm pminal Voltage 121 µs 6 Gy/s	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for ≥ 99.5 % saturation > 99.0 % saturation Max. dose per pulse for ≥ 99.5 % saturation	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm pminal Voltage 121 μs 6 Gy/s 12 Gy/s	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 µs 14 Gy/s 28 Gy/s
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for ≥ 99.5 % saturation > 99.0 % saturation Max. dose per pulse for ≥ 99.5 % saturation > 99.0 % saturation > 99.0 % saturation	78 mg/cm² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm ominal Voltage 121 µs 6 Gy/s 12 Gy/s 0.5 mGy	78 mg/cm² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 µs 14 Gy/s 28 Gy/s 0.8 mGy
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for ≥ 99.5 % saturation > 99.0 % saturation Max. dose per pulse for ≥ 99.5 % saturation > 99.0 % saturation > 99.0 % saturation Liseful ranges	78 mg/cm² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm ominal Voltage 121 µs 6 Gy/s 12 Gy/s 10.5 mGy 1.0 mGy	78 mg/cm² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 µs 14 Gy/s 28 Gy/s 0.8 mGy 1.5 mGy
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for > 99.5 % saturation > 99.0 % saturation Max. dose per pulse for > 99.5 % saturation > 99.0 % saturation Useful ranges Chamber voltage	78 mg/cm² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm eminal Voltage 121 µs 6 Gy/s 12 Gy/s 0.5 mGy 1.0 mGy	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 μs 14 Gy/s 28 Gy/s 0.8 mGy 1.5 mGy
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for > 99.5 % saturation > 99.0 % saturation Max. dose per pulse for > 99.5 % saturation > 99.0 % saturation Useful ranges Chamber voltage	78 mg/cm² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm ominal Voltage 121 µs 6 Gy/s 12 Gy/s 0.5 mGy 1.0 mGy 140 kV to 50 MV photons	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 μs 14 Gy/s 28 Gy/s 0.8 mGy 1.5 mGy ± 100 to 400 V 100 kV to 50 MV photons
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for > 99.5 % saturation > 99.0 % saturation Max. dose per pulse for > 99.5 % saturation > 99.0 % saturation Useful ranges Chamber voltage	78 mg/cm² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm ominal Voltage 121 µs 6 Gy/s 12 Gy/s 0.5 mGy 1.0 mGy 1.0 mGy 140 kV to 50 MV photons (10 to 45) MeV electrons	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 μs 14 Gy/s 28 Gy/s 0.8 mGy 1.5 mGy ± 100 to 400 V 100 kV to 50 MV photons (10 to 45) MeV electrons
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for > 99.5 % saturation > 99.0 % saturation Max. dose per pulse for > 99.5 % saturation > 99.0 % saturation Useful ranges Chamber voltage Radiation quality	78 mg/cm² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm pminal Voltage 121 µs 6 Gy/s 12 Gy/s 0.5 mGy 1.0 mGy 1.0 mGy 140 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons	78 mg/cm² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 μs 14 Gy/s 28 Gy/s 0.8 mGy 1.5 mGy ± 100 to 400 V 100 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for > 99.5 % saturation > 99.0 % saturation Max. dose per pulse for > 99.5 % saturation Useful ranges Chamber voltage Radiation quality Field size	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm pminal Voltage 121 μs 6 Gy/s 12 Gy/s 0.5 mGy 1.0 mGy 1.0 mGy 140 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons (3 x 3) cm ² to (40 x 40) cm ²	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 μs 14 Gy/s 28 Gy/s 0.8 mGy 1.5 mGy ± 100 to 400 V 100 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons (4 x 4) cm ² to (40 x 40) cm ²
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for ≥ 99.5 % saturation > 99.0 % saturation Max. dose per pulse for ≥ 99.5 % saturation Useful ranges Chamber voltage Radiation quality Field size Temperature	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm ominal Voltage 121 μs 6 Gy/s 12 Gy/s 0.5 mGy 1.0 mGy 1.0 mGy 1.0 to 400 V 140 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons (3 x 3) cm ² to (40 x 40) cm ² 50°104°F (10°40°C)	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 μs 14 Gy/s 28 Gy/s 0.8 mGy 1.5 mGy ± 100 to 400 V 100 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons (4 x 4) cm ² to (40 x 40) cm ² 50°±104∓ (10°±40°C)
Dimension of Sensitve Volume Central Electrode Build-up Cap Ion Collection Efficiency at No Ion collection time Max. dose rate for ≥ 99.5 % saturation > 99.0 % saturation Max. dose per pulse for ≥ 99.5 % saturation Useful ranges Chamber voltage Radiation quality	78 mg/cm ² radius 2.75 mm length 6.5 mm Al 99.98, diameter 1.1 mm PMMA, thickness 3mm pminal Voltage 121 μs 6 Gy/s 12 Gy/s 0.5 mGy 1.0 mGy 1.0 mGy 140 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons (3 x 3) cm ² to (40 x 40) cm ²	78 mg/cm ² radius 2.75 mm length 16.25 mm Al 99.98, diameter 0.9 mm PMMA, thickness 3mm 121 μs 14 Gy/s 28 Gy/s 0.8 mGy 1.5 mGy ± 100 to 400 V 100 kV to 50 MV photons (10 to 45) MeV electrons (50 to 270) MeV protons (4 x 4) cm ² to (40 x 40) cm ²

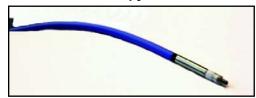
PTW PINPOINT® IONIZATION CHAMBERS

PTW 31015, 0.03 cc WATERPROOF PINPOINT CHAMBER

Small-sized therapy chambers for dosimetry in high-energy photon beams

- Small-sized sensitive volume of only 0.03 cm³ and 2.9 mm in diameter, vented to air
- Very high spatial resolution when used for scans perpendicular to the chamber axis
- Aluminum central electrode

The 31015 PinPoint chamber is ideal for dose measurements in small fields as encountered e.g. in IORT, IMRT and stereotactic beams. Relative dose distributions can be measured with very high spatial resolution when the chamber is moved perpendicular to the chamber axis.


The waterproof, fully guarded chamber can be used in air, solid state phantoms and in water.

Item	Description
300-673	PTW 31015, 0.03 cc Waterproof PinPoint Chamber

Specify Connection

PTW 31022, 0.016 cc PINPOINT® 3D CHAMBER

Ultra small-sized therapy chamber with 3D characteristics for dosimetry in high-energy photon beams

- Small-sized cylindrical ion chamber with vented sensitive volume of only 0.016 cm³
- · Small polarity effect
- Minimal cable irradiation effect
- Minimized directional response
- · Short ion collection time, low pre irradiation dose
- Suitable for field sizes from 2 cm x 2 cm to 40 cm x 40 cm

The 31022 3D PinPoint 3D chamber is ideal for dose measurements in small fields as encountered e.g. in IORT, IMRT and stereotactic beams but can also be used for measurements in large fields. Designed for radial beam orientation, the small-sized chamber shows excellent 3D characteristics. Relative dose distributions can be measured with high spatial resolution in any direction.

The waterproof, fully guarded chamber can be used in air, solid state phantoms and in water.

Item	Description
300-676	PTW 31022, 0.016 cc PinPoint 3D Chamber, Waterproof

Specify Connection

PTW 31023, 0.015 cc PINPOINT CHAMBER

Ultra small-sized therapy chamber for dosimetry in high-energy photon beams

- Small-sized cylindrical ion chamber with sensitive volume of only 0.015 cm³ and 2 mm in diameter, vented to air
- Very high spatial resolution when used for scans perpendicular to the chamber axis
- Small polarity effect
- · Minimal cable irradiation effect

The 31023 PinPoint chamber is ideal for dose measurements in small fields as encountered e.g. in IMRT and stereotactic beams as well as for FFF. Relative dose distributions can be measured with very high spatial resolution when the chamber is moved perpendicular to the chamber axis.

The waterproof, fully guarded chamber can be used in air, solid state phantoms and in water.

Item	Description
300-677	PTW 31023, 0.015 cc PinPoint Chamber

Specify Connection

Specifications	Item 300-673	Item 300-676	Item 300-677
PTW Model	31015	31022	31023
Type of Product	vented cylindrical	vented cylindrical	vented cylindrical
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ionization chamber	ionization chamber	ionization chamber
Application	dosimetry in high-energy photon	dosimetry in photon beams	dosimetry in high-energy photon
· ·	beams with high spatial resolution	,,	beams with high spatial resolution
Measuring Quantities	absorbed dose to water,	absorbed dose to water,	absorbed dose to water,
	air kerma, exposure	air kerma, exposure	air kerma, exposure
Reference Radiation Quality	⁶⁰ Co	^{€0} Co	⁶⁰ Co
Nominal Sensitive Volume	0.03 cm ³	0.016 cm ³	0.015 cm ³
Design	Waterproof, vented,	Waterproof, vented,	Waterproof, vented,
200.3.1	fully guarded	guarded	fully guarded
Reference Point	on chamber axis.	on chamber axis.	on chamber axis,
	3.4mm from chamber tip	2.4mm from chamber tip	3.4mm from chamber tip
Direction of Incidence	radial	radial	radial, axial
Pre-Irradiation Dose	2 Gy	1 Gy	1 Gy
Nominal Response	800 pC/Gy	400 pC/Gy	400 pC/Gy
Long-term Stability	≤ 1% per year	≤ 0.5 % per year	≤ 1% per year
Chamber Voltage	400 V nominal	300 V nominal	300 V nominal
	± 500 V maximal	± 500 V maximal	± 500 V maximal
Polarity Effect at 60Co	≤±2%	≤±0.8%	≤ ± 1%
Directional Response	≤ ± 0.5% for rotation around the	≤ ± 0.5% for rotation around the	≤ ± 0.5% for rotation around the
in Water	chamber axis,	chamber axis,	chamber axis,
		t ≤ ± 1% for tilting of the axis up to ±	≤ ± 1% for tilting of the axis up to ±
	20° (radial incidence)	10°	10°
	± 15° (axial incidence)		
Leakage Current	≤ ± 4 fA	≤±4fA	≤ ± 4 fA
Cable Leakage	≤ 1 pC/(Gy-cm)	≤ 100 fC/(Gy-cm)	≤ 100 fC/(Gy-cm)
Materials and Measures			
Wall of Sensitive Volume	0.57 mm PMMA,	0.57 mm PMMA,	0.57 mm PMMA,
	1.19 g/cm ³	1.19 g/cm ³	1.19 g/cm ³
	0.09 mm graphite,	0.09 mm graphite,	0.09 mm graphite,
	1.85 g/cm ³	1.85 g/cm ³	1.85 g/cm ³
Total Wall Area Density	85 mg/cm ²	84 mg/cm ²	85 mg/cm ²
Dimension of Sensitve	radius 1.45 mm	radius 1.45 mm	radius 1 mm
Volume	length 5 mm	length 2.9 mm	length 5 mm
Central Electrode	Al 99.98, diameter 0.3 mm	Al 99.98, diameter 0.6 mm	Al 99.98, diameter 0.6 mm
Build-up Cap	PMMA, thickness 3mm	PMMA, thickness 3mm	PMMA, thickness 3mm
Ion Collection Efficiency at No	ominal Voltage		
Ion collection time	50 µs	45 µs	13 µs
Max. dose rate for			
≥ 99.5 % saturation	29 Gy/s	46 Gy/s	557 Gy/s
≥ 99.0 % saturation	55 Gy/s	91 Gy/s	1.1 kGy/s
Max. dose per pulse for	1.2 mGy	0.8 mGv	4.8 mGy
≥ 99.5 % saturation	2.3 mGy	2.2 mGy	9.6 mGy
≥ 99.0 % saturation	2.5 1110)	z.z moj	o.o moj
Useful ranges			
Chamber voltage	± 100 to 400 V	± 100 to 400 V	± 100 to 400 V
Radiation quality			
Field size	⁶⁰ Co - 50 MV photons	Co - 25 MV photons	Co - 25 MV photons
	2x2 cm ² to 30x30 cm ² 50°-104°F (10°-40°C)	2x2 cm ² to 40x40 cm ² 50°-104°F (10°-40°C) 50	2x2 cm2 to 40x40 cm2 12104°F (10240°C)
Temperature			
Humidity	10 - 80%, max 20 g/m ³	10 - 80%, max 20 g/m ³	10 - 80%, max 20 g/m ³
Air pressure	700 - 1060 hPa	700 - 1060 hPa	700 - 1060 hPa

PTW 23343 MARKUS® ELECTRON CHAMBER

Classic plane parallel chamber for absolute dosimetry in high-energy electron beams

- · Thin entrance window and waterproof protection cap
- · Small-sized for high spatial resolution
- · Sensitive volume 0.055 cm3, vented to air


The 23343 Markus chamber is manufactured in the original famous Markus design. Absorbed dose to water can be measured by applying correction factors for perturbation effects as published in pertinent dosimetry protocols. The thin entrance window allows measurements in solid state phantoms up to the surface. The protection cap makes the chamber waterproof for measurements in water phantoms.

Item	Description
300-625	PTW 23343 - Markus (0.055cc) Chamber
664-401	Co-60 Build-Up Cap, 4.0 mm Acrylic

Specify Connection

PTW 34045 ADVANCED MARKUS® ELECTRON CHAMBER

Perturbation-free version of the famous classic Markus chamber for absolute dosimetry in high-energy electron beams

- · Perturbation-free electron chamber
- Thin entrance window and waterproof protection cap
- Small-sized for high spatial resolution
- Sensitive volume 0.02 cm³, vented to air
- Suitable for relative and absolute electron dosimetry

The Advanced Markus chamber features a wide guard ring design to avoid perturbation effects by reducing the influence of scattered radiation from the housing. Since the outer shape is identical with the Markus chamber, all existing Markus chamber phantom plates and adapters can be used with the Advanced Markus chamber. The small sensitive volume makes the chamber ideal for dose distribution measurements in a water phantom, giving a good spatial resolution. The chamber features a flat energy response within the nominal energy range from 2 MeV to 45 MeV. With the very thin membrane of only 0.03 mm polyethylene, the chamber is suitable for use in solid state phantoms. The chamber comes with a protective acrylic cover of 0.87 mm thickness (1 mm water equivalence) for use in water. A calibration certificate with a ⁶⁰Co calibration factor given in absorbed dose to water is included. Air density correction is required for each measurement. The chamber cable length is 1.05 m.

Item	Description
300-626	PTW 34045 - Advanced Markus Electron Chamber
664-401	Co-60 Build-Up Cap, 4.0 mm Acrylic

Specify Connection

PTW 34001 ROOS® ELECTRON CHAMBER

Waterproof plane parallel chamber for absolute dosimetry in high energy electron and proton beams

- · Perturbation-free, minimized polarity effect
- Reference chamber for precise absolute electron dosimetry
- Waterproof, wide guard ring design
- · Sensitive volume 0.35 cm3, vented to air
- · Suitable for use in water and in solid state phantoms

The 34001 Roos chamber is the golden standard for absolute dose measurements in high-energy electron beams. Modern dosimetry protocols refer to the chamber's design and provide dosimetric correction factors. Its waterproof design allows the chamber to be used in water or in solid state phantoms. The Roos chamber is also well suited for the measurement of high-energy photon depth dose curves. The chamber can be used for dose measurements of proton beams.

The Roos electron chamber 1 is used as a reference electron chamber. It is recommended by the IAEA2 for high precision electron dosimetry in radiation therapy. The chamber has a 4 mm wide guard ring to exclude any perturbation effect even at low electron energies. The polarity effect is negligible (< 0.5 % at 10 MeV). The energy response is only influenced by the stopping power ratios water / air. The chamber is waterproof for absolute dose and depth dose measurements in a water phantom. The coated acrylic entrance window has a thickness of 1.1 mm. The nominal useful energy range is from 2 MeV to 45 MeV. A calibration certificate with a 60Co calibration factor given in absorbed dose to water is included. Air density correction is required for each measurement. The chamber cable length is 1.08 m.

- 1 The Roos electron chamber was developed in cooperation with Dr. Roos, PTB-Braunschweig,German Federal Institute of Physics and Metrology (National Laboratory of Germany)
- 2 Technical Report No. TRS-381. The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon Beams, IAEA (International Atomic Energy Agency), Vienna1997

Item	Description
300-675	PTW 34001 - Roos Ion Chamber

Specify Connection

Specifications	Item 300-625	Item 300-626	Item 300-675
PTW Model	23343 Markus	34045 Advanced Markus	34001 Roos
Type of Product	vented plane parallel ionization chamberr		vented plane parallel ionization chamber acc IEC 60731
Application	absolute dosimetry in high-energy electron beams		absolute dosimetry in high-energy electron and proton beams
Measuring Quantity	absorbed dose to water		·
Reference Radiation Quality	[®] Co		
Nominal Sensitive Volume	0.055cm ³	0.02cm3	0.35cm3
Design	waterproof with protection ca	ap, vented	waterproof, vented
Reference Point	in chamber center on entran protection cap	ice foil, or 1.3 mm below surface of	in chamber center, 1.12 mm below surface
Direction of Incidence	perpendicular to chamber pl	ane	perpendicular to chamber plane, see label 'FOCUS'
Nominal Response	2 nC/Gy	0.67 nC/Gy	12 nC/Gy
Long-term Stability	< 1 % per year	-	< 0.5 % per year
Chamber Voltage	300 V nominal ± 400 V maxi	imal	200 V nominal ± 400 V maximal
Polarity Effect	< 1 % for electrons > 9 MeV		< 0.5 %
Directional Response	< ± 0.1 % for chamber tilting	< ± 10°	
In Water			
Leakage Current	< ± 4 fA		
Cable Leakage	< 3.5 pC/(Gy·cm)	< 1 pC/(Gy·cm)	
Materials and Measures			
Entrance Foil	0.03 mm PE (polyethylene C	H2), 2.76 mg/cm2	
Protection Cap	0.87 mm PMMA, 1.19 g/cm3	3, 0.4 mm air	
Entrance window			1.01 mm PMMA, 1.19 g/cm3 0.02 mm graphite, 0.82 g/cm3 0.1 mm varnish, 1.19 g/cm3
Total window area density	106 mg/cm2, 1.3 mm (prote	ction cap included)	132 mg/cm2
Water-equivalent window thickness	1.06 mm (protection cap included)		1.3 mm
Sensitive Volume	radius 2.65 mm	radius 2.5 mm	radius 7.5 mm
	depth 2 mm	depth 1 mm	depth 2 mm
Guard ring width	< 0.2 mm	2 mm	4 mm
Ion Collection Efficiency at No	ominal Voltage		
Ion collection time	90 µs	22 με	125 µs
Max. dose rate for	00 po	EE po	120 90
≥ 99.5 % saturation	12 Gy/s	187 Gy/s	5.2 Gy/s
≥ 99.0 % saturation	24 Gy/s	375 Gy/s	10.4 Gy/s
Max. dose per pulse for			
≥ 99.5 % saturation	0.7 mGy	2.78 mGy	0.46 mGy
≥ 99.0 % saturation	1.4 mGy	5.56 mGy	0.93 mGy
Useful ranges			
Chamber voltage	± 100 - 300 V	± 50 - 300 V	± 50 - 300 V
Radiation quality	2 - 45 MeV electrons 50 - 270 MeV protons		2 - 45 MeV electrons 60 Co - 25 MV photons
Field size	3 x 3 cm ² to 40 x 40 cm ²		50 - 270 MeV protons 4 x 4 cm ² to 40 x 40 cm ²
Temperature	50°to 104°F, 10°to 40°C		4 X 4 CIII 10 40 X 40 CIII
Humidity			
	10 to 80 %, max 20 g/m ³ 700 - 1060 hPa		
Air pressure	700 - 1000 IIIF8		

PTW 30016 - 0.3 cm³ Rigid Stem Chamber

Therapy chamber for absolute dosimetry in high-energy photon and electron beams

- Fully guarded chamber
- · Sensitive volume 0.3 cm³, vented to air
- · Acrylic wall, graphited
- · Aluminum central electrode

The 30016 chamber is used for absolute dose measurements in radiation therapy in cases where the high volume of the 30015 chamber is not needed and a higher spatial resolution is needed. Correction factors needed to determine absorbed dose to water or air kerma are published in the pertinent dosimetry protocols. The acrylic chamber wall ensures the ruggedness of the chamber. The chamber is designed for the use in solid state phantoms and is therefore not waterproof.

Specifications	Item 300-615
PTW Model	30016
Type of Product	vented cylindrical ionization chamber
Application	absolute dosimetry in radiotherapy beams
Measuring Quantity	absorbed dose to water, air kerma, exposure
Reference Radiation Quality	⁶⁰ Co
Nominal Sensitive Volume	0.3 cm ³
Design	not waterproof , vented, fully guarded
Reference Point	in chamber axis, 9.5 mm from chamber tip
Direction of Incidence	radial
Nominal Response	10.5 nC/Gy
Long-term Stability	≤ 1 % per year
Chamber Voltage	400 V nominal ± 600 V maximal
Polarity Effect	≤ 1%
Photon Energy Response	≤±2%, 70kv - 250 kV
Filoton Energy Response	≤±4 %, 200kV - 60Co
Directional Response in Solid	≤ ± 0.5 % for rotation around the chamber axis
State Phantom	≤ ± 1 % for tilting of the axis up to ± 20°
Leakage Current	≤±4fA
Cable Leakage	≤ 1 pC/(Gy·cm)
Cable Leakage	= 1 por(oy an)
Materials and Measures	
Wall of Sensitive Volume	0.05 DIBIA 4.40 -/3
Wall of Selfsitive Volume	0.35 mm PMMA, 1.19 g/cm ³
	0.135 mm graphite, 1.85 g/cm ³
Total Window Area Density	67 mg/cm ²
Dimension of Sensitive	radius 2.5 mm
Volume	length 18 mm
Central Electrode	Al 99.98, diameter 0.85 mm
Build-Up Cap	PMMA, thickness 3 mm
Ion Collection Efficiency at No	
Ion collection time	84 μs
Max. dose rate for	
≥ 99.5 % saturation	11.5 Gy/s
≥ 99.0 % saturation	23.1 Gy/s
Max. dose per pulse for ≥ 99.5 % saturation	0.69 mGy
	1.38 mGy
≥ 99.0 % saturation	100 110)
Useful ranges	
Chamber voltage	± 100 - 600 V
	70 kV - 50 MV Photons
Radiation quality	6 - 25 MeV electrons
Field size	
Temperature	5 x 5 cm ² to 40 x 40 cm ² 50° to 104F, 10° to 40° C,
	20 10 104 ft. 10 10 40 °C.

20 to 80 %, max 20 g/m³ 700 - 1060 hPa

Item	Description
300-615	PTW 30016 - 0.3 cm ³ Ridgid Stem Ion Chamber

Humidity

Air pressure

Specify Connection

PTW 60016 DOSIMETRY DIODE P - PHOTONS

Waterproof Silicon Detector for Dosimetry in High-Energy Photon Beams Up to Field Size 40cm x 40cm

- Waterproof, disk-shaped silicon diode detector with sensitive volume of only 0.03 mm³
- · Useful for measurements in small and large photon fields
- · Excellent spatial resolution
- Minimized energy response for field size independent measurements up to 40 cm x 40 cm

The Dosimetry Diode P has been designed for dose measurements in small photon fields as encountered in IORT, IMRT and stereotactic beams. The excellent spatial resolution allows for very precise beam profile measurements even in the penumbra region of small fields. Due to its superior energy response accurate percentage depth dose (PDD) measurements can be performed which are field size independent up to field sizes of 40 x 40 cm².

The waterproof diode detector can be used in air, solid state phantoms and in water.

Specifications	Item 300-681
PTW Model	60016
Type of Product	p-type silicon diode
Application	dosimetry in radiotherapy beams
Measuring Quantity	absorbed dose to water
Reference Radiation Quality	⁶⁰ Co
Nominal Sensitive Volume	0.03 mm ³ , radius 0.6 mm, shielded
Design	waterproof, disk-shaped sensitive volume
	perpendicular to detector axis
Reference Point	on detector axis, 2.42 mm from
	detector tip
Direction of Incidence	axial
Nominal Response	9 nC/Gy
Dose Stability	≤ 0.5 %/kGy at 6 MV
	≤ 1 %/kGy at 15 MV
	≤ 0.5 %/kGy at 5 MeV
	≤ 4 %/kGy at 21 MeV
Temperatire Response	≤ 4 %/K
Energy Response	at higher depths than d _{max} ,the percentage depth
	dose curves match curves measured with
	ionization chambers within ± 0.5%
Bias Voltage	0 V
Signal Polarity	negative
Directional Response in Solid	
State Phantom	≤±1% for tilting ≤±40°
Leakage Current	≤ ± 50 fA
Cable Leakage	≤ 1 pC/(Gy·cm)
Materials and Measures	
Entrance Window	1 mm RW3, 1.045 g/cm ³
	1 mm epoxy
Total Window Area Density	250 mg/cm ²
Water-equivalent window	2.42 mm
thickness	
Sensitive Volume	1 mm² circular
	30 μm thick
Outer dimensions	diameter 7 mm, length 47 mm
Useful ranges	
Radiation quality	60Co - 25 MV Photons
Field size	1 x 1 cm ² to 40 x 40 cm ²
Temperature	10°to 40℃, 50°to 104°F
Humidity	10 to 80 %, max 20 g/m ³

Item	Description
300-681	PTW 60016 - Dosimetry Diode P - Photons

PTW SOFT X-RAY IONIZATION CHAMBERS

Thin window plane parallel chamber for dose measurements in superficial radiation therapy

PTW 23342 - 0.02 cm³ Soft X-Ray Chamber

- · Ultra thin entrance window
- · For low-energy photons from 15 kV to 70 kV
- Sensitive volume 0.02 cm3, vented to air

The 23342 soft X-ray chamber is the golden standard for absolute dose measurements in low-energy photon beams as used in superficial radiation therapy. Correction factors needed for the determination of absorbed dose to water are available. The chamber is designed for the use in solid state phantoms.

Item #	Description
300-620	Small 0.02 cm ³ Soft X-Ray Chamber - PTW 23342

PTW 23344 - 0.2 cm³ Soft X-Ray Chamber

- · Ultra thin entrance window
- For low-energy photons from 15 kV to 70 kV
- Sensitive volume 0.2 cm³, vented to air

The 23344 soft X-ray chamber is used for absolute dose measurements in low-energy photon beams as used in superficial radiation therapy. The sensitive volume is larger than that of the 23342 chamber, giving a higher signal at the cost of a lower spatial resolution. Correction factors needed for the determination of absorbed dose to water are available. The chamber is designed for the use in solid state phantoms.

Item #	Description
300-630	Big 0.2 cm³ Soft X-Ray Chamber - PTW 23344

Specifications	Item 300-620	Item 300-630
PTW Model	23342	23344
Type of Product	vented plane parallel ionization chamber acc. IEI	
Application	absolute dosimetry in low-energy photon beams	
Measuring Quantity	absorbed dose to water, air kerma, exposure	
Reference Radiation Quality	30 kV, HVL 0.37 mm Al (T30)	
Nominal Sensitive Volume	0.02 cm ⁸	0.2 cm ³
Design	not waterproof, vented	0.2 dil
Reference Point	in chamber center of entrance foil underside	
Direction of Incidence	perpendicular to chamber plane	
Nominal Response	1 nC/Gy	10 nC/Gy
Long-Term Stability	≤ 1 % per year	,
Chamber Voltage	300 V nominal, ± 500 V maximal	
Directional Response	≤±1% for chamber tilting up to ±20°	
Leakage Current	≤±10 [A	
Cable Leakage	≤ 1 pC/(Gy·cm)	
Materials and Measures		
Entrance Foil	0.03 mm PE	
Total Window Area Density	2.76 mg/cm ²	
Sensitive Volume	radius 1.5 mm	radius 6.5 mm
	depth 1 mm	depth 1.5 mm
Ion Collection Efficiency at No	ominal Voltage	
Ion collection time	30 µs	
Max. dose rate for		
≥ 99.5 % saturation	175 Gy/s	60 Gy/s
≥ 99.0 % saturation	350 Gy/s	120 Gy/s
Max. dose per pulse for	4.0	4.4
≥ 99.5 % saturation	1.8 mGy 4.5 mGy	1.1 mGy 2.7 mGy
≥ 99.0 % saturation	4.5 moy	2.7 moy
Useful Ranges		
Chamber Voltage	± 100 - 400 V	
Radiation Quality	15 70 kV x rays	
Field Size	1 x 1 cm² to 40 x 40 cm²	2 x 2 cm² to 40 x 40 cm²
Temperature	10"to 40°C, 50"to 104°F	
Humldity	20 to 80 %, max 20 g/m ³	
Air pressure	700 to 1060 hPa	

EXRADIN ION CHAMBERS

THE EXRADIN ADVANTAGE

Better Components

- · Waterproof construction eliminates the need for sleeves or protective coatings.
- Robust materials are more durable than typical chambers (i.e. PMMA thimble tips), and therefore are more suitable for routine
 measurements.
- · Excellent inherent conductivity negates the need for coatings found in other chambers, which can flake off and require careful handling.
- Collector, guard and shell are made of conductive material developed by Dr. Francis Shonka, the creator of A150 tissue-equivalent,
 C552 air-equivalent and D400 polystyrene-equivalent plastics

Superior Stability

- Advanced guard design creates a consistent collecting volume with uniform field lines, providing a stable, repeatable signal.
- Exradin detectors feature some of the quickest settling times of any manufacturer.
- Exceptionally wide guard rings on all parallel plate chambers eliminate perturbation volume effects.

Ideal Design for Improved Accuracy

- The Collecting volumes of Exradin Ion Chambers are defined by the guard, not an insulator, creating a significantly more stable signal than competing detectors.
- Axially symmetric design ensures a uniform isotropic response.
- · Collection efficiencies of 99.9% or greater.
- · Chamber vents through a flexible tube surrounding the triaxial cable; ideal for use in water or plastic phantoms.
- · Homogeneous construction on most chambers.

Quick Response upon hookup

- Ionization currents can be read immediately after electrometer and extension cable transients subside because Exradin Ion Chambers
 do not exhibit voltage soakage or stem effect.
- Exradin chambers typically have ± 10 x 10⁻¹⁵ amp leakage.

EXRADIN THIMBLE ION CHAMBERS

Strict manufacturing tolerances and waterproof construction makes these detectors ideal for dosimetry calibrations in water, air and other phantom materials.

- · Waterproof construction backed by five-year warranty.
- · Rugged Shonka plastic provides years of reliable use and excellent conductivity.
- · Lack of stem-effect and low leakage provides precise, consistent measurements.
- Proven guard design stabilizes measurements and reduces settling time.
- · Homogeneous material throughout the chamber minimizes perturbation of the beam.

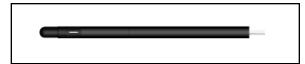
Exradin A1 Ion Chamber 0.053 cc Miniature Shonka

The Exradin A1 has the same internal dimensions and collecting volume as the A1SL, yet the larger diameter is ideal for use in solid phantoms. This chamber is characterized in TG-51 and TRS-398.

 Two separate stem pieces of 5.1 cm and 12.7 cm can be coupled together for versatility of operation and additional length when needed

Item #	Description
300-205-A1	Exradin A1, 0.053 cc Miniature Shonka
300-205-T1	Exradin T1, 0.053 cc Miniature Shonka

Exradin A1SL Ion Chamber 0.053 cc Slimline Miniature Shonka



The A1SL, available in air or tissue equivalent plastic, provides a perfect balance between fast scanning and point-dose measurements within 1cm in water, air or phantom materials. This chamber is characterized for TG-51 and TRS-398 procedures.

- The Exradin A1SL Ion Chamber has a one-piece, non-removable 5.6 cm stem made of black anodized aluminum for use in plastic phantoms with small cavities or confined water tank mounting scenarios
- 6x7mm field size

Item	Description
300-205-A1SL	Exradin A1SL, 0.053 cc Slimline Miniature Shonka

Exradin A2 0.53 cc Spokas

The A2 is ideal for precise measurement of exposure and air kerma in photon beams and absorbed dose in photon, electron, proton and other beams. This chamber is available in air, polystyrene and tissue equivalent plastic. It is also available in magnesium equivaltent plastic.

 Two separate stem pieces of 5.1 cm and 12.7 cm can be coupled together for flexibility of operation and additional length when needed

Item	Description
300-210-A2	Exradin A2, 0.53 cc Spokas Chamber
300-210-P2	Exradin P2, 0.53 cc Spokas Chamber
300-210-T2	Exradin T2, 0.53 cc Spokas Chamber

Exradin A12S 0.24 cc Farmer - Type



The A12S is designed for absolute dosimetry calibrations in water, air or phantoms. The collector of the A12S is approximately one-third the size of the A12, confining collecting volume to the tip of the chamber.

- Two separate stem pieces of 5.1 cm and 12.7 cm can be coupled together for flexibility of operation and additional length when needed
- Matching 2.8 mm thick Cobalt-60 build-up cap of C552 Shonka air-equivalent plastic included

Item	Description
300-240-A12S	Exradin A12S, 0.24 cc Farmer-Type Chamber

Exradin A28 0.125cc Scanning

The Model A28 Chamber features exceptional omni-directional spatial resolution for relative dosimetry scanning in water phantoms and use in minute field measurements.

Item	Description
300-255-A28	Exradin A28, 0.125 cc Scanning Chamber

Exradin A12 0.64 Farmer-Type

Characterized in TG-51 and TRS-398, the A12 has fast settling time and a removable stem for superior absolute dosimetry calibrations in water, air or phantoms.

- Two separate stem pieces of 5.1 cm and 12.7 cm can be coupled together for flexibility of operation and additional length when needed
- Matching 2.8 mm thick Cobalt-60 build-up cap of C552 Shonka air-equivalent plastic included

Item	Description
300-240-A12	Exradin A12, 0.64 cc Farmer-Type Chamber

Exradin A19 0.62 cc Classic Farmer®

The A19 fits existing plastic phantom cavities and build-up caps, limiting perturbation and minimizing settling time in absolute dosimetry calibration. This chamber is characterized for TG-51 procedures.

- One-piece, non-removable 4.6 cm stem made of black anodized aluminum styled after traditional Farmer-type chambers
- Matching 2.8 mm thick Cobalt-60 build-up cap of C552 Shonka air-equivalent plastic included

®Farmer is a registered trademark of PTW Freiburg GmbH

Item	Description
300-240-A19	Exradin A19, 0.62 cc Classic Farmer® Chamber

SPECIFICATIONS FOR EXRADIN THIMBLE ION CHAMBERS

Specifications	Item 300-205-A1 Item 300-205-T1	Item 300-205-A1SL	Item 300-210-A2 Item 300-210-P2 Item 300-210-T2	Item 300-240-A12	Item 300-240-A12S	Item 300-240-A19	Item 300-240-A28
Exradin Model	A1	A1SL	A2	A12	A125	A19	A28
Collecting Volume	0.053 cm ³	0.053 cm ²	0.53 cm ³	0.64 cm ³	0.24 cm ³	0.62 cm ³	0.125 cm ³
Centroid of Collecting Volume	3.86 mm	4.06 mm	6.96 mm	12.9 mm	5.79 mm	13.0 mm	4.47 mm
from exterior tip of shell							
Outside Diameter of Shell Collecting Volume	6.0 mm	6.35 mm	11.4 mm	/.1 mm	7.1 mm	/.1 mm	8.0 mm
Inside Diameter of Shell Collecting Volume	4.0 mm	4.0 mm	9.5 mm	6.1 mm	6.1 mm	6.1 mm	5.8 mm
Shell Wall Thickness	1.0 mm	1.1 mm	1.0 mm	0.5 mm	0.5 mm	0.5 mm	1.1 mm
Collector Diameter	1.0 mm	1.0 mm	4.6 mm	1.0 mm	1.0 mm	1.0 mm	1.0 mm
Collector Length	4.4 mm	4.4 mm	8.4 mm	21.6 mm	7.5 mm	21.6 mm	6.4 mm
Shell, Collector and Guard	A, T	A	A, P, T	٨	Α	Α	Α
Material*							
Nominal Air Kerma Calibration	5.4E+8	5.4E+8	5.4E+7	4.4E+7	1.2E+8	4.5E+7	2.3E+8
Factor†	Gy/C	Gy/C	Gy/C	Gy/C	Gy/C	Gy/C	Gy/C
Recommended Polarizing	300 V						
Voltage							
Nominal Leakage	+ 10 x 10 15 amp						
Maximum Polarizing Voltage	1000 VDC						
Waterproof	YES						
Included Buildup Cap	None	None	None	^m Co	^m Co	[™] Co	^{€0} Co

^{*} Material: A – C552 Shonka air-equivalent plastic P – D400 polystyrene-equivalent plastic T – A150 Shonka tissue-equivalent plastic † Nominal calibration factor for Co-60 at 22° C

EXRADIN MICRO ION CHAMBERS

Superior small-field dosimetry to assess pinpoint radiation in IMRT, stereotactic, orthovoltage, x-rays and superficial skin therapy

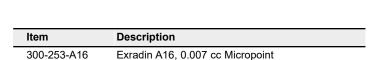
- · Inherently waterproof construction eliminates the need for sleeves or protective coatings.
- · Rugged conductive plastic provides years of reliable use.
- · Lack of stem-effect and low leakage provides precise, reliable measurements.

Exradin A14 Ion Chamber 0.015 cc Microchamber

The Model A14 microchamber has the exact internal dimensions and collecting volume as the Model A14SL, yet a larger diameter is ideal for use in solid phantoms.

Item	Description
300-250-A14	Exradin A14, 0.015 cc Microchamber

Exradin A14SL Ion Chamber 0.015 cc Slimline Microchamber


The Model A14SL is capable of measuring extremely small field sizes, allowing for exceptional spatial resolution and exact pinpoint beam profile characterization. This helps assess radiation fields during IMRT and stereotactic radiosurgery

Item	Description
300-250-A14SL	Exradin A14SL, 0.015 cc Slimline Microchamber

Exradin A16 Ion Chamber 0.007 cc Micropoint

The Model A16 microchamber measures extremely small field sizes (3.4 mm x 3.4 mm); allowing for exceptional spatial resolution and exact pinpoint beam profile characterization. These attributes make the A16 ideal for stereotactic radiosurgery and IMRT applications.

Exradin A26 Ion Chamber 0.015 cc Reference-Class Microchamber

Experience the same measurement quality in a microchamber you have come to expect from your reference-class chamber.

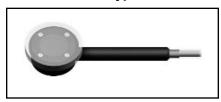
- Rapid settling
- Stable, reproducible measurements
- · Realistic and meaningful ion recombination corrections
- · Minimal polarity dependence
- Minimal energy dependence
- The only microchamber that was designed to meet reference class criteria

Item	Description
300-254-A26	Exradin A26, 0.015 cc Reference-Class Microchamber

E - 22

SPECIFICATIONS FOR EXRADIN THIMBLE ION CHAMBERS

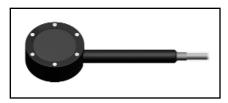
Specifications	Item	ltem	Item	ltem
	300-250-A14	300-250-A14\$L	300-253-A16	300-253-A26
Exradin Model	A14	A14SL	A16	A26
Collecting Volume	0.015 cm ³	0.015 cm ³	0.007 cm ³	0.015 cm ³
Centrold of Collecting Volume	2.21 mm	2.39 mm	1.65 mm	1.98 mm
from exterior tip of shell				
Outside Diameter of Shell	6.0 mm	6.35 mm	3.4 mm	4.3 mm
Collecting Volume				
Inside Diameter of Shell	4.0 mm	4.0 mm	2.4 mm	3.3 mm
Collecting Volume				
Shell Wall Thickness	1.0 mm	1.1 mm	0.5 mm	0.5 mm
Collector Diameter	0.3 mm	0.3 mm	0.3 mm	0.75 mm
Collector Length	1.5 mm	1.5 mm	1.27 mm	1.78 mm
Shell Material*	A	A	A	A
Nominal Air Kerma Calibration	1.9E+9	1.9E+9	4.1E+9	1.85E+9
Factor	Gy/C	Gy/C	Gy/C	Gy/C
Recommended Polarizing	300 V			
Voltage				
Nominal Leakage	+ 10 Fa			
Maximum Polarizing Voltage	1000 VDC			
Waterproof	YES			
Included Buildup Cap	None	None	⁶⁰ Co	^{вп} Со


^{*} Material: A - C552 Shonka air-equivalent plastic

EXRADIN PARALLE PLATE CHAMBERS

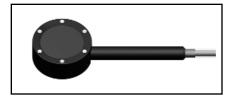
Exradin Parallel Plate Chambers ensure precision in depth-dose measurements by providing uniform field lines even at low energies

- Exceptionally wide guard rings exceed 3mm widths recommended in TG-39.
- Rigid stem allows accurate positioning of chamber.
- · Chamber vents through a flexible tube sealed to the chamber body, ideal for use in water or plastic phantoms.


Exradin A10 0.050 cc Markus®-type Parallel Plate

The A10 Markus-type chamber provides excellent spatial resolution for dose distribution measurements in a water phantom. An acrylic waterproof cap is included with this chamber for use in TG-51 electron beam protocols.

Item	Description
300-225-A10	Exradin A10, 0.050 cc Markus®-type Chamber


Exradin A11 0.62 cc Parallel Plate

Waterproof A11 Roos-type chamber may be operated while fully submerged without any protective sheath; ideal for repeated TG-51/TRS-398 dose distribution measurements iin a water phantom.

Item	Description
300-230-A11	Exradin A11, 0.62 Parallel Plate Chamber
300-230-P11	Exradin P11, 0.62 Parallel Plate Chamber
300-230-T11	Exradin T11, 0.62 Parallel Plate Chamber

Exradin A11TW 0.93 cc Thin Window Parallel Plate

The 11TW is tailored for use in superficial therapy and low energy diagnostic beams. The thin-window design provides nearly constant response over the entire diagnostic energy range.

Item	Description
300-232-A11TW	Exradin A11TW, 0.93 Thin Window Parallel Plate Chamber
300-232-P11TW	Exradin P11TW, 0.93 Thin Window Parallel Plate Chamber
300-232-T11TW	Exradin T11TW, 0.93 Thin Window Parallel Plate Chamber

Exradin A20 0.074 Low Energy X-ray

The A20 is a low-energy x-ray chamber for assessing and calibrating pinpoint radiation fields for x-rays, stereotactic and TG-61 compliant superficial skin therapy.

Item	Description
300-235-A20	Exradin A26, 0.015 cc Reference-Class Microchamber

SPECIFICATIONS FOR EXRADIN PARALLEL PLATE ION CHAMBERS

Specifications	Item 300-225-A10	Item 300-230-A11 Item 300-230-P11 Item 300-230-T11	Item 300-232-A11TW Item 300-232-P11TW Item 300-232-T11TW	Item 300-254-A26
Exradin Model	A10	11	11TW	A20
Collecting Volume	0.050 cm ³	0.62 cm ³	0.93 cm ³	0.074 cm ³
Centroid of Collecting Volume	1.0 mm	2.0 mm	1.5 mm	1.8 mm
from exterior surface of				
window				
Window Collecor Gap	2.0 mm	2.0 mm	1.5 mm	1.8 mm
Collector Diameter	5.4 mm	20.0 mm	20.0 mm	1.93 mm
Guard Ring Width (Radial)	4.3 mm	4.4 mm	4.4 mm	1.2 mm
Window Material	3.86 mg/cm ²	1.0 mm	3.86 mg/cm ²	7.72 mg/cm ²
	Kaplon	A, P or T	Kaplon	Kaplon
Window or Support Rings,	A	A, P, T	A, P, T	A
Collector and Guard Material				
Nominal Air Kerma Calibration	5.6E+8	4.6E+8	3.0E+7	3.85E+8
Factor	Gy/C	Gy/C	Gy/C	Gy/C
Nominal Leakage	+ 10 fA			
Maximum Polarizing Voltage	1000 VDC			
Waterproof	Yes, with included	Yes	Yes, with included	No
	1.0 mm PMMA Cap		1.0 mm PMMA Cap	
Included Buildup Cap	None			

^{*} Material: A - C552 Shonka air-equivalent plastic P - D400 polystyrene-equivalent plastic T - A150 Shonka tissue-equivalent plastic

IBA FARMER TYPE CHAMBERS

- · Waterproof
- Air ionization chamber
- · Vented through waterproof sleeve
- Fully guarded
- Includes Build-up Cap, with individual factory calibration certificate and user's guide

Applications

All farmer type chambers are designed for measurements with high reproducibility in air, in solid or in water phantoms. They are suitable for absolute dosimetry of photon, electron and proton beams in radiotherapy.

300-222 FC65-G

300-722, the FC65-G is the standard reference detector for reference dosimetry and scientific applications

Item #	Description
300-722	Farmer Type Chamber FC65-G

300-720 FC65-P

300-720, the FC65-P can be used for all routine applications.

· Robust plastic construction for daily beam check

Item #	Description
300-720	Farmer Type Chamber FC65-P

300-725 FC23-C

300-725, the FC23-C yields higher precision in measuring of isodose contours.

- · Robust plastic construction for daily beam check
- · Higher spatial resolution

Item #	Description
300-725	Farmer Type Chamber FC23-C

Specifications	Item 300-720	Item 300-722	Item 300-725
IBA	FC65-P	FC65-G	FC23-C
Cavity Volume	0.65 cm ³	0.65 cm ³	0.23 cm ³
Cavity Length	23.1 mm	23.1 mm	8.8 mm
Cavity Radius	3.1 mm	3.1 mm	3.1 mm
Wall Material	POM¹	Graphite	C552
Wall Thickness	0.057 g/cm ²	0.073 g/cm ²	0.070 g/cm ²
Central Electrode Material	Aluminum	Aluminum	C552
Connector	BNC-M	BNC-M	BNC-M
Cable	1.4 m	1.4 m	1.4 m

¹ Poly Oxy Methylene (CH₂0). A trade name is Delrin.

E

IBA PLANE PARALLEL CHAMBERS

300-735 PPC05

- Waterproof
- · Vented through waterproof sleeve
- · Fully guarded
- Supplied with individual factory calibration certificate and user's guide

Applications

All plane parallel chambers are designed for measurements with high reproducibility in air, in solid or in water phantoms.

PPC05 is suitable for absolute dosimetry of electron, photon and proton beams in radiotherapy.

- Higher spatial resolution (depth dose)
- Suitable for phantoms and holders designed for Markus chamber.

Item #	Description
300-735	Plane Parallel Chamber PPC05

300-740 PPC40

PPC40 is suitable for absolute dosimetry of electron, photon and proton beams in radiotherapy

- · Superior physics characteristics:
 - stabilization time after polarity change approx. 30 s
 - polarity effect < 1% for all usable energies, field sizes and depths at linear accelerators

300-745 NACP

The NACP is designed according to recommendations of the Nordic Association of Clinical Physicists (NACP), Acta Radiologica Oncology 19,55. The chamber is used for absolute dosimetry of electron beams 2-50 MeV. A thinner front wall minimizes contamination of the beam and allows measurements at shallow depth and high accuracy even at low electron energies is guaranteed

· Low polarity effect

Item #	Description	Item #	Description
300-740	Plane Parallel Chamber PPC40	300-745	Plane Parallel Chamber NACP

Specifications	Item 300-735	Item 300-740	Item 300-745
IBA	PPC05	PPC40	NACP
Materials	Window and body C552; graphited (PEEK) electrode	PMMA	Mylar foile and graphite window; Body PMMA; electrode graphited
Window Thickness	176 mg/cm² 1 mm	118 mg/cm² 1 mm	104 mg/cm² 0.6 mm
Active Volume	0.05 cm ³	0.4 cm ³	0.16 cm ³
Electrode Spacing	0.5 mm	2.0 mm	2.0mm
Collecting Electrode Diameter	10.0 mm	16.0 mm	10.0 mm
Guard Ring Width	3.5 mm	4.0 mm	3.0 mm
Connector	BNC-M	BNC-M	BNC-M
Cable	1.4 m	1.4 m	2.0 m

IBA COMPACT CHAMBERS

Waterproof

- · Vented through waterproof sleeve
- · Fully guarded
- Supplied with individual factory calibration certificate and user's guide

Applications

All compact chambers are designed for measurements with high reproducibility in air, in solid or in water phantoms. They are suitable for relative dosimetry of photon, electron and proton fields in radiotherapy.

300-751 RAZOR

300-755 CC04

The RAZOR and CC04 chambers are the conventional ionization chambers for measurements of small fields and of ranges with high dose gradients, e.g. stereotactic fields.

· High uniform spatial resolution

Item #	Description	
300-751	RAZOR Chamber	
300-755	Compact Chamber CC04	

300-760 CC08

CC08 is used for customized applications during manufacturing and installation of linear accelerators (e.g. "Buddelship")

· Used for radial and axial beam incidence

Item #	Description	
300-760	Compact Chamber CC08	

300-765 CC13

CC13 is the standard chamber for clinical use in water phantoms and for output factor measurements.

· Used for radial and axial beam incidence

Item #	Description	
300-765	Compact Chamber CC13	

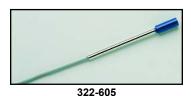
300-767 CC13-S

The CC13-S is replacement for RK chamber used in RFA phantoms. Parameters of the CC13-S are similar to CC13.

· Used for radial and axial beam incidence

Item #	Description
300-767	Compact Chamber CC13-S
300-768	CC13-S Holder for RFA Phantoms

300-770 CC25


CC25 is mainly used for quality assurance in air and for low dose measurements in water phantoms.

Item #	Description
300-770	Compact Chamber CC25

Specifications	Item 300-751	Item 300-755	Item 300-760	Item 300-765	Item 300-767	Item 300-770
IBA	RAZOR	CC004	CC08	CC13	CC13-S	CC25
Cavity Volume	0.01 cm ³	0.04 cm ³	0.08 cm ³	0.13 cm ³	0.13 cm ³	0.25 cm ³
Cavity Length	3.6 mm	3.6 mm	4.0 mm	5.8 mm	5.8 mm	10.0 mm
Cavity Radius	1.0 mm	2.0 mm	3.0 mm	3.0 mm	3.0 mm	3.0 mm
Wall Material	C552	C552	C552	C552	PEEK/C552	C552
Wall Thickness	0.088 gm/cm ²	0.070 gm/cm ²	0.070 gm/cm ²	0.070 gm/cm ²	0.154 gm/cm ²	0.070 gm/cm ²
Central Electrode Material	Graphite	C552	C552	C552	C552	C552
Connector	BNC-M	BNC-M	BNC-M	BNC-Banana Plug	BNC-M	BNC-M
Cable	1.4 m					

IBA DOSIMETRY DIODE DETECTORS

- Waterproof
- · Have a proven dose rate and energy independence
- Have a high uniform spatial resolution in the beam plane and precise definition of the measurement depth (accurately shaped penumbras in the whole beam plane using the same detector orientation)
- Independent of bias, pressure and moisture, very robust, always reliable, no "warm-up" time
- · High durability: 3 year warranty low lifetime costs

Applications

The IBA Dosimetry Diode Detectors are designed for depth dose and profile measurements in water and in air and for output factor measurements in small photon beams.

The IBA Dosimetry Diode Detectors are an excellent choice in relative field analysis as well as output factor measurements. They are based on the 3rd generation of pSi semiconductors. The high doped p-type silicon detector chips, specifically designed for radiation therapy applications, have been the natural choice for measurements where high spatial resolution is required. The accuracy and lifetime of the diode detectors is unsurpassed in the field of radiation therapy today.

Item 300-605 EFD³⁶ Electron Diode provides direct electron depth dose, no need for ionization to dose conversion.

Diode	Item 322-600	Item 322-605	Item 322-610
IBA	PFD	EFD	RFD
Effective Measurement Point	< 0.9 mm	< 0.9 mm	NA
Chip Size (Side / Thickness)	2.5 / 0.5 mm	2.5 / 0.5 mm	2.5 / 0.5 mm
Geometric Form of Active Area	Circled	Circled	Circled
Diameter of Active Area	2 mm	2 mm	2 mm
Thickness of Active Volume	0.06 mm	0.06 mm	0.06 mm

Item #	Description	
322-600	PFD ^{3G} Photon Diode Detector	
322-605	EFD ^{3G} Electron Diode Detector	
322-610	RFD ^{3G} Reference Diode Detector	

IBA DOSIMETRY RAZOR DETECTOR

High Performance Diode Detector for Small Field Dosimetry The RAZOR Diode Detector is designed for Relative Dosimetry of Photon and Electron Beams in Radiotherapy

- Depth dose and profile measurements "in air" (i.e. inside a solid phantom) and in a water phantom
- Output factor measurements in small to medium sized photon heams
- Rigid and long-lasting semiconductor
- · Based on p-type silicon diode chip

Specifications

Stem Material: Stainless steel

Enclosure Material: ABS plastic and epoxy

Position of Measurement Point: Indicated by a cross-hair at the top of

the detector

Effective Measurement Point: 0.8 ± 0.2 mm from surface

Chip Size: 0.95 x 0.95 x 0.4 mm Active Detector Diameter: 0.6 mm Active Detector Thickness: 0.02 mm

Head Diameter: 4.0 mm Head Length: 15 mm Stem Diameter: 4.0 mm Total Length: 60 mm Cable length: 2 m Cable: Low-noise coaxial

Connector: Triaxial BNC (with 2 lugs) or TNC

(¹ On the TNC connector the inner and outer screens are connected)

Dosimetric Performance

Parameter	Value		Conditions	Notes
	Тур.	Max.	Conditions	Notes
Sensitivity	4.1 nC/Gy		⁶⁰ Со	
Dose Linearity	<0.2%	0.5%	0.02– 40 Gy, [∞] Co	Absolute deviation from endpoint fit
Dose per pulse dependence	±0.5%	±1%	$D_p = 0.1 - 2.3 \text{ mGy}$	Normalization at 0.4 mGy
dS/dD	1% / kGy 1% / kGy 2% / kGy 0.1% / kGy	2% / kGy 4% / kGy 4% / kGy 0.2% / kGy	[∞] Co 6 MV 15 MV 10 MeV electrons	Very worst case: real time sensitivity measurement during irradiation, no annealing ~1month between irradiation and measurement
PRF Dependency		0.5%	12– 400 Hz Dp = 0.1– 2.3 mGy	Absolute sensitivity change
Energy Dependence	0.5%	1%	5 x 5 cm ^{2,} , 6 MV, 30 cm depth	Absolute deviation between PDDs measured with the Razor and CC08 chambers
Lifetime	>/=200 kGy		10 MeV electrons	
Temperature Dependence	0.05% / °C		15– 40°C	

Item #	Description	
322-620	Razor Detector, BNC connector	
322-622	Razor Detector, TNC connector	