Conclusions
Brass mesh bolus is most equivalent to a 3 mm bolus, and does not affect the dose beyond the buildup region. This bolus cannot be directly calculated in Eclipse, hence a 3mm bolus calculation is a good reflection of the dose response to the brass mesh bolus.

Introduction
Post mastectomy reconstructed chest wall irradiation with bolus is difficult to perform due to the difficulty of conforming the square superflab bolus to the round reconstructed breast contour. Brass mesh bolus conforms well to the breast and hence may be a suitable alternative for bolus (Fig 1).

Aim
To determine the tissue equivalence of a brass mesh bolus (RPD, Inc) in the setting of a reconstructed chest wall irradiation.

Materials and Methods
We measured breast skin dose delivered by a tangential field plan on an anthropomorphic phantom using Mosfet (Best medical, Canada) and nanoDot (Landauer) dosimeters in five different locations on the breast. We also measured skin dose using no bolus, 5mm and 10mm superflab bolus and Brass Mesh bolus (Fig2).

Results
nanoDot and Mosfet measurements were consistent with each other. As expected, skin dose measurements with no bolus had the least agreement with Eclipse calculation, while measurements for 5 and 10 mm agreed well with the calculation despite the difficulty in conforming superflab bolus to the breast contour. For the brass mesh the best agreement was for 3 mm bolus Eclipse calculation. For Mosfets, the average measurement was 90.8% of the expected dose, and for nanoDot 88.33% compared to 83.34%, 83.64%, 93.94% and 99.11% (2,3,5 and 10 mm bolus calculation respectively). (Fig3)

The brass mesh bolus increased skin dose by approximately 25% but there was no dose increase beyond the build-up region (Fig 4.)